
Note on the inclusion-exclusion principle

Problem 1 (Hats problem). 8 people enter a restaurant leaving their hats at the front. When leaving, each
person takes a random hat.

Q1 How many “ways” can they leave in (looking only at person/hats combinations)?

Q2 In how many ways could they all end up with someone else’s hat?

We can think of each “way” (or set of choices) the 8 people can make as a function f from the 8 people
P to themselves. We interpret f(p) = q as “p took q’s hat”.

Of course, two people cannot be wearing the same hat and every hat is taken (since there are 8 hats).
Therefore, question 1 is just asking for the number of bijections from P to P .

Theorem 1. The number of bijections from A to A is n! where |A| = n.

Proof. We can obtain a bijection from A = {a1, a2, . . . , an} to A by

• first choosing f(a1) (we have n choices here, namely all elements of A), and

• then choosing f(a2) (we have n − 1 choices here, namely all elements of A except f(a1)), and

• then choosing f(a3),

• and so on.

The number of choices we have is the product of the number of choices we had at each step. This is n!.
We now need to show that our procedure chooses every bijection and every bijection exactly once.
Given a bijection g, we can simply look at g(a1) and make that as our first choice. Then look at g(a2)

and make that as our second choice. And so on. Until the function we have chosen is exactly g.
If we make two different sets of choices to build function f1 and f2 then there is a first step (say, step

i), where we make a different choice. Thus, f1(ai) 6= f2(ai) since we do not change our decision about f(ai)
after the ith step. So f1 6= f2 as functions.

Therefore our procedure chooses every bijection exactly once and thus the number of bijections is n!.

Now to answer the second question. The second question asks for the number of functions where we do
not have f(p) = p for any person p. We can define these notions more formally as follows.

Definition 1. A fixed point of a function f : A → A is an element a ∈ A such that f(a) = a.

Definition 2. A derangement is a function f : A → A with no fixed points.

Thus, we want to know the number of derangements from A to A. However, this answer is not as simple.
To answer this question, we make use of the inclusion-exclusion principle.

Theorem 2. (Inclusion-exclusion principle) For any n sets S1, S2, . . . , Sn,

|S1 ∪S2 ∪ . . .∪Sn| =

n
∑

i=1

|Si|−
∑

1≤i<j≤n

|Si ∩Sj |+
∑

1≤i<j<k≤n

|Si ∩Sj ∩Sk|− . . . +(−1)n+1|S1 ∩S2 ∩ . . .∩Sn|

Proof. We prove this theorem by induction on n.
For n = 2, this formula is simply |S1 ∪ S2| = |S1| + |S2| − |S1 ∩ S2|. To prove this, we note that any

element is in exactly one of

1. S1 and S2,

2. S1 but not S2,
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3. S2 but not S1, or

4. Neither S1 nor S2

(by determining if the element is in S1 and then determining if it is in S2).

• In the first case, the element is counted once on the left hand side and 1 + 1− 1 = 1 time on the right
hand side.

• In the second case, the element is counted once on the left hand side and once on the right hand side.

• In the third case, the element is counted once on the left hand side and once on the right hand side.

• In the fourth case, the element is counted zero times on the left hand side and zero times on the right
hand side.

This proves the theorem when n = 2 (since the count is correct for all elements).
Now suppose that the theorem is true for n− 1 with n > 2. We will prove the theorem is true for any n

sets S1, . . . , Sn.

|S1 ∪ S2 ∪ . . . ∪ Sn| = |S1 ∪ S2 ∪ . . . ∪ Sn−1| + |Sn| − |(S1 ∪ S2 ∪ . . . ∪ Sn−1) ∩ Sn|

by applying the theorem for the case n = 2. Here the first set is S1 ∪ S2 ∪ . . . ∪ Sn−1 and the second set is
Sn.

Now,

|S1 ∪ S2 ∪ . . . ∪ Sn−1| + |Sn| − |(S1 ∪ S2 ∪ . . . ∪ Sn−1) ∩ Sn|

= |S1 ∪ S2 ∪ . . . ∪ Sn−1| + |Sn| − |((S1 ∩ Sn) ∪ (S2 ∩ Sn) ∪ . . . ∪ (Sn−1 ∩ Sn))|

=

n−1
∑

i=1

|Si| −
∑

1≤i<j≤n−1

|Si ∩ Sj | +
∑

1≤i<j<k≤n−1

|Si ∩ Sj ∩ Sk| − . . . + (−1)n|S1 ∩ S2 ∩ . . . ∩ Sn−1|

+ |Sn| − |((S1 ∩ Sn) ∪ (S2 ∩ Sn) ∪ . . . ∪ (Sn−1 ∩ Sn))|

by applying induction to the first term.
Similarly, we can apply induction to the second term.

n−1
∑

i=1

|Si| −
∑

1≤i<j≤n−1

|Si ∩ Sj | +
∑

1≤i<j<k≤n−1

|Si ∩ Sj ∩ Sk| − . . . +(−1)n|S1 ∩ S2 ∩ . . . ∩ Sn−1|

+|Sn| +|((S1 ∩ Sn) ∪ . . . ∪ (S n−1 ∩ Sn))|

=

n−1
∑

i=1

|Si| −
∑

1≤i<j≤n−1

|Si ∩ Sj | +
∑

1≤i<j<k≤n−1

|Si ∩ Sj ∩ Sk| − . . . +(−1)n|S1 ∩ S2 ∩ . . . ∩ Sn−1|

+|Sn| −

n−1
∑

i=1

|Si ∩ Sn| +
∑

1≤i<j≤n−1

|(Si ∩ Sj) ∩ Sn| − . . . + . . .

+(−1)n+1 |(S1 ∩ Sn) ∩ . . . ∩ (S n−1 ∩ Sn)|

=

n
∑

i=1

|Si| −
∑

1≤i<j≤n

|Si ∩ Sj | +
∑

1≤i<j<k≤n

|Si ∩ Sj ∩ Sk| − . . . +(−1)n+1|S1 ∩ S2 ∩ . . . ∩ Sn|

Since S1, . . . , Sn was arbitrary, we have proven the theorem by induction.
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We can now apply this to the hats problem

Theorem 3. The number of derangements from A to A where |A| = n is

n
∑

i=0

(−1)i n!

i!

Proof. Let A = {a1, . . . , an}.
Let Si be the set of all bijections from A to A where ai is a fixed point.
Let T be the set of all bijections from A to A.
The set of all derangements is then simply T \ (S1 ∪ S2 ∪ . . . ∪ Sn).
By the inclusion-exclusion principle,

|S1 ∪ S2 ∪ . . . ∪ Sn| =

n
∑

i=1

|Si| −
∑

1≤i<j≤n

|Si ∩ Sj| +
∑

1≤i<j<k≤n

|Si ∩ Sj ∩ Sk| − . . . + (−1)n+1|S1 ∩ S2 ∩ . . . ∩ Sn|

Now, for any i, |Si| = (n − 1)! (the number of bijections from A \ {ai} to itself). Similarly, for any i,
|Si ∩ Sj | = (n − 2)! (the number of bijections from A \ {ai, aj} to itself) and so on.

|S1 ∪ S2 ∪ . . . ∪ Sn| =

n
∑

i=1

(n − 1)! −
∑

1≤i<j≤n

(n − 2)! +
∑

1≤i<j<k≤n

(n − 3)! − . . . + (−1)n+11!

=

(

n

1

)

(n − 1)! −

(

n

2

)

(n − 2)! +

(

n

3

)

(n − 3)! − . . . + (−1)n+1

(

n

n

)

1!

=
n

∑

i=1

(−1)i+1

(

n

i

)

(n − i)!

Note that |T | = n! = (−1)2
(

n
0

)

(n − 0)!, so we obtains

|T | − |S1 ∪ S2 ∪ . . . ∪ Sn| = (−1)2
(

n

0

)

(n − 0)! −

n
∑

i=1

(−1)i+1

(

n

i

)

(n − i)!

= (−1)2
(

n

0

)

(n − 0)! +

n
∑

i=1

(−1)i+2

(

n

i

)

(n − i)!

=

n
∑

i=0

(−1)i+2

(

n

i

)

(n − i)!

=

n
∑

i=0

(−1)i

(

n

i

)

(n − i)!

=
n

∑

i=0

(−1)i n!

i!(n − i)!
(n − i)!

=

n
∑

i=0

(−1)i n!

i!
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