Note on the inclusion-exclusion principle

Problem 1 (Hats problem). 8 people enter a restaurant leaving their hats at the front. When leaving, each person takes a random hat.

Q1 How many "ways" can they leave in (looking only at person/hats combinations)?
Q2 In how many ways could they all end up with someone else's hat?
We can think of each "way" (or set of choices) the 8 people can make as a function f from the 8 people P to themselves. We interpret $f(p)=q$ as " p took q 's hat".

Of course, two people cannot be wearing the same hat and every hat is taken (since there are 8 hats). Therefore, question 1 is just asking for the number of bijections from P to P.

Theorem 1. The number of bijections from A to A is $n!$ where $|A|=n$.
Proof. We can obtain a bijection from $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ to A by

- first choosing $f\left(a_{1}\right)$ (we have n choices here, namely all elements of A), and
- then choosing $f\left(a_{2}\right)$ (we have $n-1$ choices here, namely all elements of A except $f\left(a_{1}\right)$), and
- then choosing $f\left(a_{3}\right)$,
- and so on.

The number of choices we have is the product of the number of choices we had at each step. This is $n!$. We now need to show that our procedure chooses every bijection and every bijection exactly once.
Given a bijection g, we can simply look at $g\left(a_{1}\right)$ and make that as our first choice. Then look at $g\left(a_{2}\right)$ and make that as our second choice. And so on. Until the function we have chosen is exactly g.

If we make two different sets of choices to build function f_{1} and f_{2} then there is a first step (say, step i, where we make a different choice. Thus, $f_{1}\left(a_{i}\right) \neq f_{2}\left(a_{i}\right)$ since we do not change our decision about $f\left(a_{i}\right)$ after the i th step. So $f_{1} \neq f_{2}$ as functions.

Therefore our procedure chooses every bijection exactly once and thus the number of bijections is $n!$.
Now to answer the second question. The second question asks for the number of functions where we do not have $f(p)=p$ for any person p. We can define these notions more formally as follows.

Definition 1. A fixed point of a function $f: A \rightarrow A$ is an element $a \in A$ such that $f(a)=a$.
Definition 2. A derangement is a function $f: A \rightarrow A$ with no fixed points.
Thus, we want to know the number of derangements from A to A. However, this answer is not as simple. To answer this question, we make use of the inclusion-exclusion principle.

Theorem 2. (Inclusion-exclusion principle) For any n sets $S_{1}, S_{2}, \ldots, S_{n}$,
$\left|S_{1} \cup S_{2} \cup \ldots \cup S_{n}\right|=\sum_{i=1}^{n}\left|S_{i}\right|-\sum_{1 \leq i<j \leq n}\left|S_{i} \cap S_{j}\right|+\sum_{1 \leq i<j<k \leq n}\left|S_{i} \cap S_{j} \cap S_{k}\right|-\ldots+(-1)^{n+1}\left|S_{1} \cap S_{2} \cap \ldots \cap S_{n}\right|$
Proof. We prove this theorem by induction on n.
For $n=2$, this formula is simply $\left|S_{1} \cup S_{2}\right|=\left|S_{1}\right|+\left|S_{2}\right|-\left|S_{1} \cap S_{2}\right|$. To prove this, we note that any element is in exactly one of

1. S_{1} and S_{2},
2. S_{1} but not S_{2},
3. S_{2} but not S_{1}, or
4. Neither S_{1} nor S_{2}
(by determining if the element is in S_{1} and then determining if it is in S_{2}).

- In the first case, the element is counted once on the left hand side and $1+1-1=1$ time on the right hand side.
- In the second case, the element is counted once on the left hand side and once on the right hand side.
- In the third case, the element is counted once on the left hand side and once on the right hand side.
- In the fourth case, the element is counted zero times on the left hand side and zero times on the right hand side.

This proves the theorem when $n=2$ (since the count is correct for all elements).
Now suppose that the theorem is true for $n-1$ with $n>2$. We will prove the theorem is true for any n sets S_{1}, \ldots, S_{n}.

$$
\left|S_{1} \cup S_{2} \cup \ldots \cup S_{n}\right|=\left|S_{1} \cup S_{2} \cup \ldots \cup S_{n-1}\right|+\left|S_{n}\right|-\left|\left(S_{1} \cup S_{2} \cup \ldots \cup S_{n-1}\right) \cap S_{n}\right|
$$

by applying the theorem for the case $n=2$. Here the first set is $S_{1} \cup S_{2} \cup \ldots \cup S_{n-1}$ and the second set is S_{n}.

Now,

$$
\begin{aligned}
& \left|S_{1} \cup S_{2} \cup \ldots \cup S_{n-1}\right|+\left|S_{n}\right|-\left|\left(S_{1} \cup S_{2} \cup \ldots \cup S_{n-1}\right) \cap S_{n}\right| \\
= & \left|S_{1} \cup S_{2} \cup \ldots \cup S_{n-1}\right|+\left|S_{n}\right|-\left|\left(\left(S_{1} \cap S_{n}\right) \cup\left(S_{2} \cap S_{n}\right) \cup \ldots \cup\left(S_{n-1} \cap S_{n}\right)\right)\right| \\
= & \sum_{i=1}^{n-1}\left|S_{i}\right|-\sum_{1 \leq i<j \leq n-1}\left|S_{i} \cap S_{j}\right|+\sum_{1 \leq i<j<k \leq n-1}\left|S_{i} \cap S_{j} \cap S_{k}\right|-\ldots+(-1)^{n}\left|S_{1} \cap S_{2} \cap \ldots \cap S_{n-1}\right| \\
+ & \left|S_{n}\right|-\left|\left(\left(S_{1} \cap S_{n}\right) \cup\left(S_{2} \cap S_{n}\right) \cup \ldots \cup\left(S_{n-1} \cap S_{n}\right)\right)\right|
\end{aligned}
$$

by applying induction to the first term.
Similarly, we can apply induction to the second term.

$$
\begin{array}{rlllll}
& \sum_{i=1}^{n-1}\left|S_{i}\right| & -\sum_{1 \leq i<j \leq n-1}\left|S_{i} \cap S_{j}\right| & +\sum_{1 \leq i<j<k \leq n-1}\left|S_{i} \cap S_{j} \cap S_{k}\right| & -\ldots & +(-1)^{n}\left|S_{1} \cap S_{2} \cap \ldots \cap S_{n-1}\right| \\
+ & \left|S_{n}\right| & +\mid\left(\left(S_{1} \cap S_{n}\right) \cup \ldots \cup(S\right. & \left.\left.n-1 \cap S_{n}\right)\right) \mid \\
= & \sum_{i=1}^{n-1}\left|S_{i}\right| & -\sum_{1 \leq i<j \leq n-1}\left|S_{i} \cap S_{j}\right| & +\sum_{1 \leq i<j<k \leq n-1}\left|S_{i} \cap S_{j} \cap S_{k}\right| & -\ldots & +(-1)^{n}\left|S_{1} \cap S_{2} \cap \ldots \cap S_{n-1}\right| \\
+ & \left|S_{n}\right| & -\sum_{i=1}^{n-1}\left|S_{i} \cap S_{n}\right| & +\sum_{1 \leq i<j \leq n-1}\left|\left(S_{i} \cap S_{j}\right) \cap S_{n}\right| & -\ldots & +\ldots \\
+ & (-1)^{n+1} & \mid\left(S_{1} \cap S_{n}\right) \cap \ldots \cap(S & \left.n-1 \cap S_{n}\right) \mid \\
= & \sum_{i=1}^{n}\left|S_{i}\right| & -\sum_{1 \leq i<j \leq n}\left|S_{i} \cap S_{j}\right| & +\sum_{1 \leq i<j<k \leq n}\left|S_{i} \cap S_{j} \cap S_{k}\right| & -\ldots & +(-1)^{n+1}\left|S_{1} \cap S_{2} \cap \ldots \cap S_{n}\right|
\end{array}
$$

Since S_{1}, \ldots, S_{n} was arbitrary, we have proven the theorem by induction.

We can now apply this to the hats problem
Theorem 3. The number of derangements from A to A where $|A|=n$ is

$$
\sum_{i=0}^{n}(-1)^{i} \frac{n!}{i!}
$$

Proof. Let $A=\left\{a_{1}, \ldots, a_{n}\right\}$.
Let S_{i} be the set of all bijections from A to A where a_{i} is a fixed point.
Let T be the set of all bijections from A to A.
The set of all derangements is then simply $T \backslash\left(S_{1} \cup S_{2} \cup \ldots \cup S_{n}\right)$.
By the inclusion-exclusion principle,
$\left|S_{1} \cup S_{2} \cup \ldots \cup S_{n}\right|=\sum_{i=1}^{n}\left|S_{i}\right|-\sum_{1 \leq i<j \leq n}\left|S_{i} \cap S_{j}\right|+\sum_{1 \leq i<j<k \leq n}\left|S_{i} \cap S_{j} \cap S_{k}\right|-\ldots+(-1)^{n+1}\left|S_{1} \cap S_{2} \cap \ldots \cap S_{n}\right|$
Now, for any $i,\left|S_{i}\right|=(n-1)$! (the number of bijections from $A \backslash\left\{a_{i}\right\}$ to itself). Similarly, for any i, $\left|S_{i} \cap S_{j}\right|=(n-2)$! (the number of bijections from $A \backslash\left\{a_{i}, a_{j}\right\}$ to itself) and so on.

$$
\begin{aligned}
\left|S_{1} \cup S_{2} \cup \ldots \cup S_{n}\right| & =\sum_{i=1}^{n}(n-1)!-\sum_{1 \leq i<j \leq n}(n-2)!+\sum_{1 \leq i<j<k \leq n}(n-3)!-\ldots+(-1)^{n+1} 1! \\
& =\binom{n}{1}(n-1)!-\binom{n}{2}(n-2)!+\binom{n}{3}(n-3)!-\ldots+(-1)^{n+1}\binom{n}{n} 1! \\
& =\sum_{i=1}^{n}(-1)^{i+1}\binom{n}{i}(n-i)!
\end{aligned}
$$

Note that $|T|=n!=(-1)^{2}\binom{n}{0}(n-0)$!, so we obtains

$$
\begin{aligned}
|T|-\left|S_{1} \cup S_{2} \cup \ldots \cup S_{n}\right| & =(-1)^{2}\binom{n}{0}(n-0)!-\sum_{i=1}^{n}(-1)^{i+1}\binom{n}{i}(n-i)! \\
& =(-1)^{2}\binom{n}{0}(n-0)!+\sum_{i=1}^{n}(-1)^{i+2}\binom{n}{i}(n-i)! \\
& =\sum_{i=0}^{n}(-1)^{i+2}\binom{n}{i}(n-i)! \\
& =\sum_{i=0}^{n}(-1)^{i}\binom{n}{i}(n-i)! \\
& =\sum_{i=0}^{n}(-1)^{i} \frac{n!}{i!(n-i)!}(n-i)! \\
& =\sum_{i=0}^{n}(-1)^{i} \frac{n!}{i!}
\end{aligned}
$$

